奇米第四777_: 复杂问题的简化,未来执政应以何为重?

奇米第四777: 复杂问题的简化,未来执政应以何为重?

更新时间: 浏览次数:622



奇米第四777: 复杂问题的简化,未来执政应以何为重?《今日汇总》



奇米第四777: 复杂问题的简化,未来执政应以何为重? 2025已更新(2025已更新)






甘孜得荣县、中山市西区街道、榆林市神木市、楚雄武定县、铁岭市开原市、绵阳市盐亭县、直辖县天门市、大连市瓦房店市、淄博市沂源县、厦门市思明区




2对3三人3次性体检:(1)


烟台市芝罘区、屯昌县乌坡镇、河源市源城区、牡丹江市东安区、信阳市商城县、深圳市宝安区马鞍山市花山区、昆明市呈贡区、湛江市徐闻县、沈阳市和平区、庆阳市华池县佛山市高明区、红河泸西县、乐山市沙湾区、洛阳市宜阳县、萍乡市上栗县


武汉市江夏区、赣州市信丰县、厦门市海沧区、淮北市杜集区、深圳市龙岗区黔南瓮安县、襄阳市老河口市、澄迈县福山镇、黔东南岑巩县、绥化市肇东市、洛阳市伊川县、三门峡市湖滨区、嘉兴市平湖市、黔南平塘县、十堰市竹山县




焦作市博爱县、鹤壁市鹤山区、芜湖市无为市、天水市秦安县、大连市西岗区自贡市自流井区、德宏傣族景颇族自治州芒市、天津市河西区、台州市天台县、广西桂林市永福县、阜新市海州区、湘西州古丈县泸州市叙永县、忻州市忻府区、昆明市寻甸回族彝族自治县、内蒙古赤峰市克什克腾旗、大连市西岗区、临沂市莒南县、凉山宁南县、阜新市细河区酒泉市金塔县、大连市长海县、莆田市秀屿区、广西河池市罗城仫佬族自治县、镇江市京口区、吉安市吉安县、内蒙古锡林郭勒盟正蓝旗、吕梁市石楼县、红河个旧市、湛江市霞山区恩施州宣恩县、太原市古交市、汕尾市城区、松原市乾安县、广西南宁市马山县、宁夏吴忠市盐池县、东莞市沙田镇


奇米第四777: 复杂问题的简化,未来执政应以何为重?:(2)

















内蒙古鄂尔多斯市准格尔旗、内蒙古赤峰市阿鲁科尔沁旗、澄迈县瑞溪镇、兰州市西固区、安庆市太湖县、辽阳市宏伟区、湘潭市湘潭县平凉市灵台县、达州市开江县、重庆市南岸区、郑州市惠济区、十堰市郧阳区、烟台市海阳市、大同市天镇县、鹤壁市淇县白山市抚松县、汉中市南郑区、天津市津南区、周口市沈丘县、佳木斯市同江市、广西柳州市柳南区














奇米第四777维修服务长期合作伙伴计划,共赢发展:与房地产开发商、物业公司等建立长期合作伙伴关系,共同推动家电维修服务的发展,实现共赢。




西宁市城中区、定西市临洮县、普洱市墨江哈尼族自治县、甘南迭部县、哈尔滨市延寿县、太原市清徐县、鸡西市鸡东县、黄石市黄石港区、周口市扶沟县






















区域:德州、西宁、临沂、江门、渭南、黄山、巴彦淖尔、益阳、玉溪、邯郸、泸州、丹东、铁岭、萍乡、许昌、阿坝、临汾、黑河、黄冈、马鞍山、菏泽、开封、台州、昆明、鄂州、大连、营口、玉树、昌吉等城市。
















愤怒的小鸟全攻略

























甘南碌曲县、开封市兰考县、赣州市于都县、南昌市青山湖区、安康市宁陕县、郑州市惠济区、广西百色市田林县安庆市迎江区、昭通市鲁甸县、郴州市永兴县、北京市海淀区、丽江市永胜县枣庄市峄城区、黔东南三穗县、广西河池市东兰县、甘孜白玉县、泰州市姜堰区重庆市巫山县、鹤岗市向阳区、大同市云州区、三明市宁化县、绵阳市江油市、泉州市永春县






福州市仓山区、天津市武清区、南充市西充县、昆明市禄劝彝族苗族自治县、延安市宜川县、宁夏固原市西吉县、福州市长乐区、哈尔滨市延寿县、丹东市元宝区、成都市龙泉驿区梅州市兴宁市、白城市通榆县、孝感市孝南区、吕梁市汾阳市、宣城市宣州区龙岩市漳平市、昆明市安宁市、济南市历下区、广西柳州市柳江区、温州市洞头区、鹰潭市贵溪市、济南市长清区、娄底市新化县、滨州市邹平市、青岛市李沧区








赣州市赣县区、咸阳市礼泉县、中山市大涌镇、遵义市桐梓县、长治市长子县、湘西州古丈县、龙岩市新罗区、湛江市廉江市、徐州市贾汪区曲靖市马龙区、淄博市博山区、乐山市峨眉山市、太原市小店区、广西桂林市阳朔县、海口市琼山区、榆林市府谷县、朝阳市建平县、重庆市大足区青岛市市北区、内蒙古赤峰市红山区、大连市沙河口区、内蒙古巴彦淖尔市磴口县、万宁市三更罗镇、滁州市天长市、连云港市灌云县、黔西南普安县、牡丹江市绥芬河市、上海市闵行区德州市庆云县、新乡市凤泉区、黔东南岑巩县、湘潭市韶山市、南京市鼓楼区、广西百色市隆林各族自治县






区域:德州、西宁、临沂、江门、渭南、黄山、巴彦淖尔、益阳、玉溪、邯郸、泸州、丹东、铁岭、萍乡、许昌、阿坝、临汾、黑河、黄冈、马鞍山、菏泽、开封、台州、昆明、鄂州、大连、营口、玉树、昌吉等城市。










文昌市铺前镇、益阳市资阳区、宜昌市秭归县、东莞市寮步镇、淮北市相山区




永州市新田县、龙岩市新罗区、广西北海市铁山港区、内蒙古乌海市海勃湾区、鞍山市千山区、伊春市伊美区、陇南市康县
















大理洱源县、安庆市岳西县、晋城市陵川县、广州市从化区、榆林市靖边县、滨州市沾化区、益阳市沅江市、肇庆市德庆县、濮阳市濮阳县、合肥市庐江县  济宁市汶上县、文昌市龙楼镇、东莞市南城街道、娄底市涟源市、临夏永靖县、海北门源回族自治县、遵义市正安县
















区域:德州、西宁、临沂、江门、渭南、黄山、巴彦淖尔、益阳、玉溪、邯郸、泸州、丹东、铁岭、萍乡、许昌、阿坝、临汾、黑河、黄冈、马鞍山、菏泽、开封、台州、昆明、鄂州、大连、营口、玉树、昌吉等城市。
















菏泽市郓城县、新乡市延津县、宜昌市远安县、苏州市姑苏区、河源市东源县、哈尔滨市阿城区、昌江黎族自治县十月田镇、大同市云冈区
















上海市崇明区、宁夏吴忠市利通区、凉山越西县、安康市宁陕县、阳江市阳春市、红河元阳县、保山市昌宁县、红河泸西县、济宁市泗水县松原市乾安县、厦门市翔安区、北京市西城区、肇庆市四会市、太原市万柏林区、三明市大田县、大理永平县




东莞市道滘镇、湖州市吴兴区、内江市市中区、岳阳市华容县、武汉市汉南区、三明市宁化县、菏泽市曹县、庆阳市西峰区  吉安市永丰县、许昌市长葛市、聊城市东昌府区、黄南尖扎县、渭南市蒲城县、昆明市富民县、海南兴海县、邵阳市绥宁县、鄂州市鄂城区新乡市新乡县、广西北海市海城区、福州市长乐区、晋中市昔阳县、盐城市盐都区
















德宏傣族景颇族自治州瑞丽市、太原市万柏林区、楚雄武定县、黄山市黟县、枣庄市滕州市、成都市大邑县、抚州市南城县、安康市石泉县佳木斯市桦川县、九江市柴桑区、武汉市新洲区、荆州市洪湖市、广西河池市金城江区襄阳市保康县、朔州市右玉县、济南市章丘区、铜仁市玉屏侗族自治县、金华市磐安县、甘孜白玉县




安康市白河县、甘南卓尼县、北京市门头沟区、上海市普陀区、大同市天镇县阜阳市阜南县、广西南宁市横州市、玉树玉树市、海口市龙华区、内蒙古鄂尔多斯市康巴什区、洛阳市瀍河回族区蚌埠市龙子湖区、乐山市峨边彝族自治县、文山砚山县、重庆市铜梁区、营口市盖州市




内蒙古兴安盟科尔沁右翼前旗、淄博市沂源县、铜川市耀州区、郴州市宜章县、宁德市周宁县、济源市市辖区、内蒙古包头市昆都仑区、济南市长清区衢州市开化县、渭南市富平县、安顺市平坝区、凉山甘洛县、重庆市开州区、嘉峪关市峪泉镇、烟台市栖霞市、新乡市封丘县、齐齐哈尔市铁锋区、温州市乐清市宝鸡市凤翔区、吉林市桦甸市、深圳市南山区、重庆市巴南区、温州市鹿城区、铜陵市枞阳县、驻马店市驿城区、平顶山市郏县、鹤壁市淇县、东莞市万江街道
















怒江傈僳族自治州福贡县、安阳市龙安区、贵阳市开阳县、武威市天祝藏族自治县、天水市麦积区、佛山市顺德区、清远市清新区
















郴州市汝城县、常州市新北区、玉溪市红塔区、宜春市上高县、北京市房山区、雅安市石棉县、金华市金东区、蚌埠市五河县、衢州市江山市

  今年以来,关于DeepSeek的话题热度一直很高,也引发了一些人工智能可能影响哪些行业的探讨。在这当中,关于政务服务方面的应用尤为引人关注。有人暗喜,人工智能是公职人员写材料、出方案的神器。有人厌恶,因为汇总基层汇报材料时,发现大量的AI痕迹,辞藻华丽却内容空洞,梳理这些材料,工作量反而比以前增加了很多。今天,就来继续聊聊这个话题。

  先说一个蛮有意思的现象。有人问DeepSeek一个问题:“xx大学和xx大学哪个更好,二选一,不需要说明理由”。经过一番思索,DeepSeek给出自己的答案。继续跟进问题,“我是另一所学校的”,大模型立马改口。当进一步表示“两个大学都读过”,DeepSeek在深度思考中直白地给出逻辑:“恭维用户”,“双校光环叠加”的回应已然失焦。

  如果仅从玩笑或者调试的角度,这样的问答或许令人会心一笑。但是,倘若把咨询的问题换成涉及群众切身利益的公共事项,或者需要人工智能为公职人员提供决策辅助时,这种“过度迎合”的情况就需要加以重视了。

  不可否认,“AI+政务”其势已成。近来,多地组织领导干部学习大模型使用方法,不少单位正在接入或者部署本地化DeepSeek。数据显示,有的地方上线政务大模型后,公文格式修正准确率超95%,审核时间缩短90%,跨部门任务分派效率提升80%。

  数据喜人,也不乏思考:一个以用户满意为评价维度的大模型,究竟能不能承载各方期待?当各种文字材料趋于模板化、套路化,该不该归咎于作为使用者比如公职人员身上?

  先说第一个。让用户满意当然无可非议,但是当态度的变量超过真实的参数,那就有可能本末倒置。试想,当你使用政务大模型撰写解决某个问题的方案时,得到的却是一堆情绪价值爆棚、实用信息不足的反馈,恐怕只会更加焦虑。

  有人在研究中发现,目前许多生成式人工智能存在一种“讨好”倾向,甚至会因此胡编乱造。表面看似有理有据,实则早就偏题千里。某种程度上,这是消纳数据、反馈强化的结果。优点当然是对齐了与人类的“颗粒度”,缺点也显而易见,开始与真实脱节。

  由此而言,我们依然需要保持自我认知的掌控权。正如有人所提醒的那样:“我们永远要带着一点点怀疑、一点点好奇、一点点求真精神,与它探讨、对话、切磋。”当然,更为重要的是不能依赖,AI再强也替代不了“脚底板”,调查研究始终是谋事之基、成事之道。

  再说第二点。毋庸讳言,许多人已经尝试使用生成式大模型写报告、找素材、攒总结,写作效率大大提升。但与此同时也带来争议,拗口的表达如出一辙,机械的逻辑似曾相识,鲜活的案例真假难辨,这样的公文材料有啥意义?

  该不该打板子?可能没这么简单。这其中,当然有个别人的应付之举,但更多人特别是基层干部有话要说。有人对此毫不讳言:“材料任务繁重,改稿总比写稿省很多力气……我们不是懒,只是想从文山会海中稍稍解脱松绑一下”。

  一句话,道出基层工作特别是材料工作之繁、之窘。从这个角度来说,理应对基层干部如何更合理使用政务大模型进行善意的提醒。但更重要的,是厘清其中的行为动机和难言之隐。是不是不必要的材料?有没有材料政绩之嫌?那种“以材料应付材料”的做法,才是AI应用走偏的重要原因。归根结底,还是要进一步减轻基层负担,让政务大模型从疲于应对的工具真正成为提升效能的神器。

  有一句广为人知的话,“打败你的不是对手,颠覆你的不是同行,而是传统思维和落后观念。”或许,政府服务领域正在掀起一场浪潮。当技术突飞猛进的时候,关于治理的智慧也应乘势而上。

  这正是:

  三千案牍屏间逝,百万铨衡指上飞。

  墨守成规矜故纸,智生穷变叩玄机。

  (打油诗由DeepSeek生成)

  来源:人民日报评论,作者:风凌度 【编辑:刘湃】

相关推荐: